全职高手r18调教学院:小妹求在线免费翻译高手

来源:百度文库 编辑:中科新闻网 时间:2024/05/06 06:59:00
Number of Tanks
Once the total storage capacity is established the number of tanks should be decided. In larger terminals, where a single tank is not sufficient, the minimum number of tanks can be determined based on the total storage volume and the maximum capacity of a single tank. The latter number, however, is not fixed, and will depend on the type of containment, type of construction and applicable codes. This is a typical instance where the LNG storage configuration depends on several inter-related factors.
Most of the LNG tanks in service have capacities of 100,000 cubic meters or less. Aboveground tanks with an inner metal wall have been built for capacity as high as 140,000 cubic meters. With today's technology it should be possible to build these up to 200,000 cubic meters capacity. However, the maximum capacity may be limited depending on the applicable codes and hydrostatic test requirements. Below-ground tanks using the membrane type design with reinforcing concrete have been built for capacities as high as 200,000 cubic meters. Above-ground tanks with concrete inner and outer walls have been proposed for 250,000 cubic meters capacity.
A typical grassroots terminal with 2.5 million tpa capacity might require 250,000 to 300,000 cubic meters of storage. This can be accomplished with two to three LNG tanks.
For smaller terminals, with a small overall storage requirement, a single-tank may be an option to consider. Despite the excellent record of reliability with LNG tanks many owners might prefer two smaller sized tanks instead of a single large tank. The baseload nature of the facility and the implications of a long-term take or pay contract often favor multiple tanks. For example, the Fukuoka terminal in Japan, commissioned in 1993, is designed for annual sendout of 0.15 to 0.36 million tpa. This small terminal has two LNG tanks, each with a capacity of 35,000 cubic meters.
In specifying storage tank capacity it is important to remember that the "usable" volume in the tank is less than the built up volume. The minimum level to which the LNG in the tank can be lowered to will be limited by the LNG pumps' ability. Similarly, to avoid tank overfill it will be necessary to limit the maximum fill level to less than the full height of liquid container. The ratio of usable volume to built-up volume will depend on the tank height, the pumpout arrangement, the LNG pump characteristics, and the instrumentation/control philosophy. Typically, only about 95% of the volume is usable.

战车的数字
一经总储藏能力被建立战车的数字应该被决定。 在一个单一战车不是充份的较大终端机中,战车的最小数字可能是坚决的基于总储藏体积和最大一个单一战车的能力。 后者数字,然而,不被修理, 而且将会仰赖包含的类型,建筑和可适用密码的类型。 这是一个 LNG 储藏结构仰赖一些在相关之间的因素典型的例证。
大部份的 LNG 箱运转中有 100,000个立方公尺的能力或更少。 和一面内部的金属制的墙壁在地上战车已经被为能力高达 140,000个立方公尺建造。 藉由今天的技术对 200,000 立方公尺能力增进这些应该是可能的。 然而,最大的能力可能被限制仰赖可适用密码和流体静力学测试需求。 由于加强具体物使用薄膜类型设计的在下面- 地面的箱已经被为能力高达 200,000个立方公尺建造。 和具体的内部和外部的墙壁上方- 地面箱已经被为 250,000 立方公尺能力计划。
和二百五十万 tpa 能力的一个典型的草根终端机可能需要储藏的 250,000 到 300,000个立方公尺。 这能对二到三个 LNG 箱感到完成。
对于较小的终端机,藉由一个小的全部储藏需求, 一单一战车可能是选项考虑。 尽管和 LNG 的可信度的优良记录储于槽中许多拥有者可能代替一个单一大的战车偏爱二个比较小的按规定尺寸制作战车。 设备的 baseload 性质和含意一长期的时常轮流或支付契约支持多样的战车。举例来说,在 1993 年被委任的在日本的福冈市终端机,为 0.15 到三十六万 tpa 的年度 sendout 而设计。 这小的终端机有二个 LNG 箱, 每个由于 35,000个立方公尺的能力。
在叙述重要的是记得的储藏箱能力在战车中的 " 可使用的 " 体积是少于方面那建立体积。 LNG 在战车中能被降低决意的最小水平被 LNG 泵的能力限制。 同样地, 避免战车装得太多限制最大值将会是必需的填充对小于液体容器的完全高度的水平。 可使用体积的比建造-增加体积将会仰赖战车高度, pumpout 安排, LNG 泵特性 , 和使用仪器/控制哲学。 典型地,只有大约 95% 的体积是可使用的。

晕倒,这里TANK是储罐,容器的意思。
用快译也不能直接成酱紫吧?