梦之蓝40.8度m6价格表:人类的“染色体”是什么?

来源:百度文库 编辑:中科新闻网 时间:2024/04/29 11:10:36

染色体
细胞核中由DNA、蛋白质和少量RNA组成的易被碱性染料着色的一种丝状或杆状物。1888年瓦尔德第一次提出了染色体这一名词。染色体为细胞中最重要的遗传结构。对染色体的结构与功能的研究一直是细胞学、遗传学中的重大课题。染色体可被苏木精、蕃红、结晶紫、吉姆萨、醋酸洋红、地衣红和孚尔根染液等染色。在细胞分裂中期,染色体由两条姐妹染色单体组成,它们仅在着丝粒处相连。每一条染色单体是由一个DNA分子的一条染色线盘绕而成。两条染色单体连处的着丝粒部位称初缢痕。着丝粒是染色体的一个重要组成部分,它在不同的染色体上的位置是一定的。由于着丝粒位置的不同,可把染色体分为中着丝粒染色体、近中着丝粒染色体、近端着丝粒染色体和端着丝粒染色体四种类型。着丝粒对细胞分裂与染色体移向两极起重要作用。染色体上还有一个与核仁的形成有关的缢缩区,称次缢痕。有些染色体的大小可因不同生物或同一个体的不同组织、同一组织不同外界条件而判别很大。染色体的长度变异范围为0.2~50微米,直径0.2~2微米。每种生物染色体数目是相对固定的。在体细胞中染色体成对存在,而在配子细胞中,染色体数目是体细胞中的一半。染色体的数目和开头可作为生物种的特征之一,因此可用染色体作为一个指标进行物种分类并探索物种之间的亲缘关系。染色体数目会在一定的生理、病理或外界条件下发生改变。有些先天性疾病是由于染色体数目的变异引起的,如先天愚型是由于第21对染色体上多了一个所引起的。因此开展染色体的研究,在临床上对疾病的早期诊断以及开展产前遗传咨询和对提高民族的素质等十分重要。

人体共有23对染色体,其中22对为常染色体,剩余一对(2条)为性染色体,女性是2条X染色体,即XX核型;男性则是1条X染色体和1条Y染色体,即XY核型。X染色体包含有1100种基因,或大约5%的人类基因组,以及可能有助于提高诊断血友病、失明、孤独症、肥胖和白血病等各种疾病准确性的信息。由国际科学家协会发现的这项研究显示,女性要比原来想象的更加“善变”,而女性基因也比男性复杂。领导这个国际科学家协会的英国“Wellcome Trust Sanger”研究所的马克.罗斯博士说:“在遗传模式、独特的生物学以及与人类疾病联系等方面,X染色体毫无疑问是人类基因组中最不同寻常的。”

我们可以在每个细胞核内都能找到染色体。染色体含有决定一个人性格的基因。女人有两条X染色体,男人有分别有一条X和一条Y染色体,这两条不同染色体就决定了他们的男性特征。科学家的研究结果表明,Y染色体是遭到侵蚀的仅仅具有几种基因的X染色体。这项研究结果即将刊登在最新一期《自然》杂志上。X染色体比Y染色体要大,因为女性有两条X染色体,其中一条X染色体的活动在很大程度上被切断或不活跃。

美国宾夕法尼亚州立大学医学院的劳拉.卡雷尔教授指出,X染色体上的基因并不是全都失活,这也许能够用于解释男人与女人之间的一些不同。卡雷尔教授也在《自然》杂志上发表了她的发现。X染色体失活程度在女人之间也有很大不同。卡雷尔教授在一份声明中说:“这些来自失活X染色体基因的影响有可能解释男女之间一些差异。而男女之间的一些差异与性染色体没有关系。”

基因突变以及诸如色盲、孤独症和血友病等疾病经常影响男性,原因是男性没有另一条X染色体“赔偿”这些疾病。而色盲、孤独症和血友病等疾病就与X染色体有关系。X染色体还有许多与智力缺陷有关的基因以及人类基因组中称为DMD的最大基因。DMD基因的突变会造成杜兴肌营养不良,这种病轻则令男人丧失能力,重则死亡。

“Wellcome Trust Sanger”研究所的戴维.本特利博士表示:“还有一些疾病与X染色体有关。通过研究什么地方出现了问题,我们就可以更好理解正常身体的生物进程。”(杨孝文)

第一节 人体染色体

一 人体染色体数目、结构和形态

人类体细胞具有46条染色体,其中44条(22对)为常染色体,另两条与性别分化有关,为性染色体。性染色体在女性为XX,在男性为XY。生殖细胞中卵细胞和精子各有23条染色体,分别为22+X和22+Y。

染色体在细胞周期中经历着凝缩(condensation)和舒展的周期性变化。在细胞分裂中期,染色体达到凝缩的高峰,轮廓结构清楚,因而最有利于观察(图2-1)。

每一中期染色体都由两条染色单体构成,它们各含一条DNA双螺旋链。两条单体仅在着丝粒外互相连接,该处为染色体的缩窄处,故又称为主缢痕。着丝粒是纺锤丝附着之点,在细胞分裂中染色体的运动密切相关,失去着丝粒的染色体片段通常不能在分裂后期向两极移动而丢失,着比粒又将染色体横向地分为两个臂。图2-1为中期染色体的模式图。

根据着丝粒的位置,人类染色体可以分为三种:①近中着丝粒染色体,着丝粒位于或靠近染色体中央,将染色体分为长短相近的两个臂;②亚中着丝粒染色体,着丝粒偏于一端,将染色体分为长短明显不同的两个臂;③端着丝粒染色体,着丝粒靠近一端,人类没有真正的端着丝粒染色体(图2-1)。

图2-1 中期染体模式图
右图;人类三种染色体:近中(a)、
亚中(b)、及端(c)着丝粒染色体

二 核型和分组

任何一条染色体重要的形态特征是着丝料的位置和相对长度。着丝粒将染色体分为短臂(以p表示)和长臂(以q表示)。着丝粒的位置可在显微镜下直接观察,精确测量。

将一个细胞内的染色体按照一定的顺序排列起来所构成的图像称为该细胞的核型(karyotype)。通常是将显微镜摄影得到的染色体照片剪贴而成(图2-2)。一个细胞的核型一般可代表该个体的核型。核型如用模式图表示则称为组型(idiogram)。

图2-2 一个女性的未显带核型

早期,根据染色体的长度和着丝粒位置将人类染色体顺次由1编到22号,并分为A、B、C、D、E、F、G7个组。将X和Y染色体分别归入C组和G组(图2-2)。但据此要准确鉴别多数组内染色体的序号是困难的。

1.显带染色体 70年代初,瑞典细胞化学家Caspersson首先应用荧光染料喹吖因氮芥(quinacrine mustard)处理染色体标本,发现在荧光显微镜下每条染色体出现了宽窄和亮度不同的纹,即荧光带,而各条染色体有其独特的带型,由此可以清楚地鉴别人类的每一条染色体。

用此法显带称Q显带。后来发现将染色体标本用热、碱、胰酶、尿素、去垢剂或某些盐溶预先处理,再用Giemsa染料染色,也可以显示类似带纹 ,称为G显带(图2-3)。用其它方法还可以得到与G带明暗相反的R带(reverse bands)和专门显示着丝粒异染色质的C带,以及专一显示染色体的端粒(T显带)或核仁组织区 (N带)和各种带型。

图2-3 一个男性G显带中中期分裂象

显带技术不仅解决了染色体的识别问题,由于染色体上能区别许多区和带,还为深入研究染色体的异常和人类基因定位创造了条件。

显带染色体模式图和命名:为了例于交流,1971年召开的巴黎会议曾制订了一幅显带染色体模式图并对命名作了详细的规定(图2-4)。由图可见,每条染色体仍以数字编号并分为短臂(p)和长臂(q),每条臂又分为若干区和带,次递以数字表示,如3p14代表3号染色体短臂1区4带。在此模式图的基础

图2-4 显带染色体模式图(巴黎会议,1971)

上以后又制订了人类细胞遗传学命名的国际体制(ISCN,1978),并几经修改。

2.高分辩显带染色体 巴黎会议模式图中,一套单位染色体共有332条带。70年代后期,由于细胞同步化方法的应用和显带技术的改进,人们已能得到更长和带纹更加丰富的染色体,这种染色体称为高分辩显带染色体(high resolution banding)。它能提供染色体及其畸变的更多细节,有助于发现更多细微的染色体异常,使染色体结构畸变的断点定位更加准确,因而在临床细胞遗传学检查或肿瘤染色体研究以及人类基因定位中被采用。

细胞核中可以被碱性染料染成深色的物质,由蛋白质与DNA组成

DNA片段

脱氧核糖核酸

DNA