孙悟空之大闹天空电影:什么是'多普乐效应"??

来源:百度文库 编辑:中科新闻网 时间:2024/05/09 10:23:11
多普乐效应

为了更多地了解银河系,我们必须研究确定星体运动的方法。当哈雷发现彗星在运动着的时候,他只能测量它
们走过的可视路线(固有运动)的路程,它们仿佛是在沿天体滑动着。然而,一旦天体不存在了,而且星星穿过广
阔的太空分布在距我们较近或较远处,变得十分明显,问题就出现了:某一特定的星体是正朝向我们运动,还是背
离我们运动着呢?此运动(相向或背向)被称为径向运动,因为星星被看作在沿着轮辐(或半径)朝向或背向我们
运动着,此轮以地球为中心,远离我们延伸出去。

我们如何才能探测出这个运动呢?如果一颗星正径直地背向我们或朝向我们运动,那么它在太空中的位置是不
变的。当然,如果它们背离我们运动,它将在天空中变得越来越暗。如果它稳定地朝向我们运动,则会变得越来越
亮,但是星星离我们那么远,而且相对那巨大的距离而言移动是那么缓慢,那么星星用几千年而改变的亮度完全可
以用精密仪器探测出来。此外,即使一颗星是以固有运动穿过太空,它也可以是朝向或背向我们运动以至于它在三
维空间中存在着倾斜运动。如何才能观察到这种运动呢?

此答案是在从地球上观察到的一个现象中被发现的,好像与星星无关。如果一个骑兵正在军事进攻中冲锋,吹
号以鼓舞自己军队的士气而威吓敌军,当他移向一个静止不动的收听者时,号声好像改变了音高。当掠过时,声音
突然呈现为较低的音高。

这个现象在战争最激烈时没有被发现,但在1815年,英国工程师乔治。斯蒂芬森发明了铁道机车,它不是多年
前的那种跑起来跟奔马的速度一样或再快一点的机车。更重要的是,当它们穿过人口稠密的地区时,通常会发出某
种汽笛声来警告人们,所以当机车经过时听到突然降低的声音就非常普遍了。为什么会发生这种情况?疑问就出现
了。

奥地利物理学家克里斯琴。乔安娜。多普勒十分准确地解决了问题,判定当机车逼近时,每个连续的声音都稍
微追上它前面的那个,因此它们比机车静止时更频繁地传入耳朵。因此,比机车静止时的汽笛声要高。当机车经过
或开始后退时,每个连续声波都被拉离前面那个,那么就比机车静止时传到耳朵的次数少,所以听起来音高就较低。

那么在机车穿过时声音存在着自然的变化过程,由比正常的高到比正常的低,由高音到低音。

在1842年,多普勒解出了速度与音高的数学关系,并通过火车头以不同的速度来回拖着平板车而成功地验证了
这个关系。吹号手在平板车上吹出各种音调,在地面上,具有绝对音高感的音乐家记录火车经过时的声音变化。因
此,这种音高变化被称为多普勒效应。

到现在,人们发现光也是由波构成的,虽然它的波比声波要小得多。1848年,法国物理学家阿曼德。希玻利特。

费佐指出多普勒效应适用于任何波的运动,包括光。因此,常常把光运动的方式称为多普勒—费佐效应。

如果一颗星既不靠近又不远离我们,那么它的光谱中的黑线就保持在适当的位置。如果星体背向我们运动,它
发出的?

多普勒效应
多普勒效应是为纪念Christian Doppler而命名的,他于1842年首先提出了这一理论。

他认为声波频率在声源移向观察者时变高,而在声源远离观察者时变低。一个常被使用的例子是火车,当火车接近观察者时,其汽鸣声会比平常更刺耳.你可以在火车经过时听出刺耳声的变化。同样的情况还有:警车的警报声和赛车的发动机声。

把声波视为有规律间隔发射的脉冲,可以想象若你每走一步,便发射了一个脉冲,那么在你之前的每一个脉冲都比你站立不动是更接近你自己。而在你后面的声源则比原来不动时远了一步。或者说,在你之前的脉冲频率比平常变高,而在你之后的脉冲频率比平常变低了。

多普勒效应不仅仅适用于声波,它也适用于所有类型的波,包括光波、电磁波。科学家Edwin Hubble使用多普勒效应得出宇宙正在膨胀的结论.他发现远处银河系的光线频率在变高,即移向光谱的红端.这就是红色多普勒频移,或称红移.若银河系正移向他,光线就成为蓝移.。

在移动通信中,当移动台移向基站时,频率变高,远离基站时,频率变低,所以我们在移动通信中要充分考虑"多普勒效应"。当然,由于日常生活中,我们移动速度的局限,不可能会带来十分大的频率偏移,但是这不可否认地会给移动通信带来影响,为了避免这种影响造成我们通信中的问题,我们不得不在技术上加以各种考虑。也加大了移动通信的复杂性。

这个效应是多普乐发现的,所以叫多普乐效应。
当你站在公路旁,留意一辆快速行驶汽车的引擎声音,你会发现在它向你行驶时声音的音调会变高(即频率变高),在它离你而去时音调会变得低些(即频率变低)。这种现象叫做多普勒效应。在光现象里同样存在多普勒效应,当光源向你快速运动时,光的频率也会增加,表现为光的颜色向蓝光方向偏移(因为在可见光里,蓝光的频率高),即光谱出现蓝移;而当光源快速离你而去时,光的频率会减小,表现为光的颜色会向红光方向偏移(因为在可见光里,红光的频率低),即光谱出现红移。

在进一步研究多谱勒效应之前,先让我们了解一下有关波的基本知识:

如果我们将一个小石块投入平静的水面,水面上会产生阵阵涟漪,并不断地向前传播。这时波源处的水面每振动一次,水面上就会产生一个新的波列。
设波源的振动周期为T,即波源每隔时间T振动一次,则水面上两个相邻波列之间的距离就为VT,其中V是波在水中的传播速度。在物理学中我们把这一相邻波列之间的距离称为波长,用符号λ表示。这样,波的波长、波速及振动周期三者的关系就可表示为:λ=VT (1)

由于波源振动一次所需的时间为T,则波源在单位时间内振动的次数就为1/T。物理学上,把波源在单位时间内振动的次数称为波的频率,用f表示。这样,它和周期的关系就可表示为f=1/T, 或T=1/f (2)

综合(1)式和(2)式可得:λ=VT=V/f (3)

此式是我们讨论与波有关问题的基本公式,虽然是对水波的传播总结出来的,但它对一切波都适用。

实验研究表明:对于确定的介质,波的传播速度V是一个定值。所以,当波在某一确定的介质中传播时,它的波长λ与它的周期成正比(与频率成反比)。即波的频率越高,周期越小,其波长越短;反之,波的频率越低,周期越大,其波长越长。

对声波而言,声音的频率决定着声音的音调。即声波的频率越高,声波的音调也越高,声音也越尖、越细,甚至越刺耳。根据上述的结论,产生高音的声源振动较慢,振动周期长,对应声波的波长也较长。例如:10000Hz的声波的波长是100Hz声波波长的1/100。

而在可见光中,光波的频率决定着色光的颜色。频率由低到高依次对应红、橙、黄、绿、蓝、靛、紫。其中红光频率最低,波长最长;紫光的频率最高,但波长最短。

下面我们就结合以上的背景知识一起来探究一下有关光的多谱勒效应:

假设有个光源每隔时间T发出一个波列,即光源的周期为T。如图,当它静止时相邻两个波列时间间隔为 T,距离间隔为 λ=cT

式中c表示光速。

当光源以速度V离开观察者时,在每两个相邻的波列之间的时间里光源移动的距离为VT,于是下一个波峰到达观察者所需的时间便增加了VT/c,所以,相邻的两个波峰到达观察者那里所需的时间就为:

T’=T+VT/c>T

即这时相对于观察者而言,光波的周期变长了,频率变低了。根据上面关于频率于光色之间的关系可知,次光的颜色会向红光偏移。物理学上,把这一现象称为红移。

这时到达观察者那里的两个相邻的波列的距离,即波长就变为 λ’=cT+VT

即波长变长了。这两个波长的比值为 λ’/λ= T’/T=1+V/c

即波长增加了V/c,我们把这个相对增加量就成为红移量,它取决于光源的远离速度。由于一般情况下V<< c,所以看不到光谱的红移现象;仅当V与c可以比较时,才有可能出现较为明显的红移现象。

例如室女座星系团正以约1000公里/秒的速度离开我们的银河系,于是它的频谱上任何谱线的波长都要比正常值大一个比率 λ’/λ=1+V/c =1+10000/300000=1.0033

若光源是向着观察者运动的,这时只需将以上公式中V改为-V就可以了。所不同的是,这时将出现光的蓝移现象。

根据光源的移动速度,我们可以计算出光在频谱中的偏移量;反之,根据光在频谱中的偏移量,我们也可以计算出光源相对我们的移动速度。理解这一点,我们就不难理解哈勃定律的发现过程了。

运动中的点波源 : 多普勒效应及震波

我们都曾有过这样的经验,当警车或救护车从远方靠近时,感觉其警报声音的频率似乎越来越高,
而远离时则越来越低。

这种效应由 CHristian Doppler 首先提出解说:
当声源朝观察者靠近时,前方的波由於声源的运动而被压缩,於是感觉频率增高了。
反之,远离时则波前间的距离增加了,而感觉频率变小了!如下图:波源往右方运动

听到声音的频率变化是连续的,可是为何课本所提频率变化的公式数值
却是固定的呢? 是多了怎样的限制条件呢?

对光源而言,也有类似的现象,下图:波源往左方运动
则不同方向的观察者分别会看到 蓝位移(blueShift) 与红位移(Redshift)。

例如:由观察宇宙中各星球的光谱都有红位移的现象,即 各星球似乎都远离我们而去。
人们推断目前宇宙仍然在继续扩大之中。
以下这个 Java 动画让你看出各种不同波源速度下,相对於静止观察者所感受到的都卜勒效应。

可变动的参数

波速 波长 以及波源行进的速度 (以滑鼠按住相对应箭头顶端后 拖动滑鼠)
若在视窗内按下滑鼠钮 将暂停动画 再按一次则继续

当波源行进的速度大於波速时 将产生震波

物理解说:

如下图,当水面上的小虫子在原地摆动它的肢体时,会产生以它为圆心 向四方散开的水波

假如 小虫子摆动它的肢体时 也同时朝著前方游动时,我们可能会观察到如下的水波
(当 小虫子 游动的速率 小於 水波传递的速率时)

若是波速恰好等於波源移动的速率时,则会产生如下的图形

下图则 综合各种不同 速度时的情形,v 为 虫子游动的速度, vw为水波的波速

事实上,以上的情形适用於所有的波动,水波 声波等。
当 波源移动的速度大於波本身的速度时,会形成一三角形(三度空间时:圆锥形)的波前,

所有的波同时抵达最前方的波前上,於是波相叠加,而形成震波(Shock wave)。

下图是超音速飞机飞行时所形成震波的圆锥形区域。

超音速飞机会产生两道震波 ,如左下图所示

由於飞机飞得比声音还快,因此 右上图中 A 虽然已经看到飞机,

但是却尚未听到飞机所产生的震波(刚传到 B 处)。

为了更多地了解银河系,我们必须研究确定星体运动的方法。当哈雷发现彗星在运动着的时候,他只能测量它们走过的可视路线(固有运动)的路程,它们仿佛是在沿天体滑动着。然而,一旦天体不存在了,而且星星穿过广阔的太空分布在距我们较近或较远处,变得十分明显,问题就出现了:某一特定的星体是正朝向我们运动,还是背离我们运动着呢?此运动(相向或背向)被称为径向运动,因为星星被看作在沿着轮辐(或半径)朝向或背向我们运动着,此轮以地球为中心,远离我们延伸出去。

我们如何才能探测出这个运动呢?如果一颗星正径直地背向我们或朝向我们运动,那么它在太空中的位置是不的。当然,如果它们背离我们运动,它将在天空中变得越来越暗。如果它稳定地朝向我们运动,则会变得越来越亮,但是星星离我们那么远,而且相对那巨大的距离而言移动是那么缓慢,那么星星用几千年而改变的亮度完全可以用精密仪器探测出来。此外,即使一颗星是以固有运动穿过太空,它也可以是朝向或背向我们运动以至于它在三维空间中存在着倾斜运动。如何才能观察到这种运动呢?

此答案是在从地球上观察到的一个现象中被发现的,好像与星星无关。如果一个骑兵正在军事进攻中冲锋,吹号以鼓舞自己军队的士气而威吓敌军,当他移向一个静止不的收听者时,号声好像改变了音高。当掠过时,声音突然呈现为较低的音高。

这个现象在战争最激烈时没有被发现,但在1815年,英国工程师乔治。斯蒂芬森发明了铁道机车,它不是多年前的那种跑起来跟奔马的速度一样或再快一点的机车。更重的是,当它们穿过人口稠密的地区时,通常会发出某种汽笛声来警告人们,所以当机车经过时听到突然降低的声音就非常普遍了。为什么会发生这种情况?疑问就出现了。

奥地利物理学家克里斯琴。乔安娜。多普勒十分准确地解决了问题,判定当机车逼近时,每个连续的声音都稍微追上它前面的那个,因此它们比机车静止时更频繁地传入耳朵。因此,比机车静止时的汽笛声要高。当机车经过或开始后退时,每个连续声波都被拉离前面那个,那么就比机车静止时传到耳朵的次数少,所以听起来音高就较低。

那么在机车穿过时声音存在着自然的变化过程,由比正常的高到比正常的低,由高音到低音。

在1842年,多普勒解出了速度与音高的数学关系,并通过火车头以不同的速度来回拖着平板车而成功地验证了这个关系。吹号手在平板车上吹出各种音调,在地面上,具有绝对音高感的音乐家记录火车经过时的声音变化。因此,这种音高变化被称为多普勒效应。

到现在,人们发现光也是由波构成的,虽然它的波比声波要小得多。1848年,法国物理学家阿曼德。希玻利特。

费佐指出多普勒效应适用于任何波的运动,包括光。此,常常把光运动的方式称为多普勒—费佐效应。

如果一颗星既不靠近又不远离我们,那么它的光谱中的黑线就保持在适当的位置。如果星体背向我们运动,它发出的?

由于波源和接收器间又相对运动导致接收器接受到的频率不等于波源的频率,就是这种现象

同上