两熟女与小男孩磁力:物质若在-274摄氏度时能不能还保持其性质?

来源:百度文库 编辑:中科新闻网 时间:2024/04/27 00:28:08
比如冰箱们,是一个很好的隔热材料.若将其放在一个-274摄氏度的环境下,还能隔热吗?

什么是负温度?
一般科学家所说的温度都是开尔文温度,即大于0开(-273.15摄氏度)的温度。如果画一个坐标轴,把0开作为原点,我们所说的温度都是原点右边的温度。那么,原点左边的温度该怎么描述呢?可能你马上就能想到,用负温度表示。完全正确。可是,另一个问题接着就来了,因为我们日常生活中根本不存在负温度的现象,负温度该如何理解呢?
负温度是物理上的一个概念。同样,我们可以用物理上的原理解释负温度。我们都知道,通常所说的温度与原子的运动状态联系在一起。随着温度的升高,原子的能量也升高,原子运动得就会激烈,无序度就会增高。在低温时,高能量原子的数目总是少于低能量原子的数目,所以随着温度的升高,高能量原子数目逐渐增多,原子的混乱度也随之增加。而当所有原子的能量无限增大后,这时高能量原子的数目就会多于低能量原子的数目,随之会出现一个反常的现象,那就是原子的混乱度会随着温度的继续升高而降低,变无序为有序。这种情形可以用一个例子来形象地说明:地上有一把摆得很整齐的筷子,当有外力作用时,它们就会混乱起来,有的斜着,有的立着,有的悬在空中。当外力继续作用时,很可能所有的筷子瞬间都立了起来,这时,原来的无序状态就消失了。这时的状态就是负温度状态。
但是,负温度不是描述宏观物体状态的概念,它是描述微观粒子能量反转状态的数学表述。这一概念的提出在物理学史上经历了30多年。早在1917年,爱因斯坦在研究黑体辐射对气体平衡计算时,发现辐射具有两种形式,自发辐射和受激辐射,从而提出了受激辐射的理论。1928年,德国的兰登伯在研究氖气色散现象时,发现激发电流超过一定值时,氖气的反常色散效应增强,这个实验实际上间接证实了受激辐射的存在,也直接给出了受激辐射的发生条件是实现粒子数反转。粒子数反转这一思想至关重要,然而在当时人们的心目中,认为这是不可思议的,因为在热平衡条件下,低能级粒子数总要比高能级粒子数多,实现粒子数反转就等于要破坏热平衡。因此粒子数反转思想未能引起更多人的注意。直到1951年,美国物理学家珀塞尔首先提出“负温度”概念,并把粒子数反转称为“负温度”状态。
这一温度概念的提出,解开了人们的思想禁锢,突破了人们对温度的原有想象。一直以来,在人们的传统思维中,认为比0开低的温度,肯定能量更低,也更寒冷。事实却相反,当温度趋于无穷大时,才会出现负温度状态。
现在我们明白了,所谓的负温度,是能量比正温度还要高的状态。如果从冷热来说,负温度比正温度更“热”。如果正负温度的两物体热接触,热量将从负温物体传到正温物体。并且,负温度只能出现在组成宏观物体的微观粒子的能级是有限的情况。如果能级无限,粒子的能量就会无限上升,而不会出现反转。例如只考察某粒子的自旋在磁场中的能量。就是有限的能级。而平常多数系统例如原子组成的系统,由于原子能级无限(例如氢原子从基态-13.6电子伏特到电离态0电子伏特之间有无穷多个能级),所以不存在负温度状态。
负温度其实是描述从零到正无穷的开氏温标所不能描述的状态。在开氏温度达到正无穷后还有温度,即负温度。这样就明确了负温度的含义:它不是表示比绝对零度还低的温度,而是表示大于正无穷的温度。
负温度,例如-274度,显然是可能存在的

不能,-273.15度时分子的运动停止,自然也没用了

首先物质不可能达到-274度(分子运动论指出分子在做永不停息的无规则运动)

冰箱门别说-274度呢,塑料在极低的温度下会变脆,所以冰箱门肯定也会变脆,它的隔热性应该不可能还存在

不能。曾几何时科学家就推知-273.15度是低温的极限,因为在那个温度下物体内的分子的热运动停止了。-274度就更不可能了

不能. 科学家就推知-273.15度是低温的极限,只有接近不可能超过.因为在那个温度下物体内的分子的热运动停止了.-274度就更不可能了

一般科学家所说的温度都是开尔文温度,即大于0开(-273.15摄氏度)的温度。如果画一个坐标轴,把0开作为原点,我们所说的温度都是原点右边的温度。那么,原点左边的温度该怎么描述呢?可能你马上就能想到,用负温度表示。完全正确。可是,另一个问题接着就来了,因为我们日常生活中根本不存在负温度的现象,负温度该如何理解呢?
负温度是物理上的一个概念。同样,我们可以用物理上的原理解释负温度。我们都知道,通常所说的温度与原子的运动状态联系在一起。随着温度的升高,原子的能量也升高,原子运动得就会激烈,无序度就会增高。在低温时,高能量原子的数目总是少于低能量原子的数目,所以随着温度的升高,高能量原子数目逐渐增多,原子的混乱度也随之增加。而当所有原子的能量无限增大后,这时高能量原子的数目就会多于低能量原子的数目,随之会出现一个反常的现象,那就是原子的混乱度会随着温度的继续升高而降低,变无序为有序。这种情形可以用一个例子来形象地说明:地上有一把摆得很整齐的筷子,当有外力作用时,它们就会混乱起来,有的斜着,有的立着,有的悬在空中。当外力继续作用时,很可能所有的筷子瞬间都立了起来,这时,原来的无序状态就消失了。这时的状态就是负温度状态。
但是,负温度不是描述宏观物体状态的概念,它是描述微观粒子能量反转状态的数学表述。这一概念的提出在物理学史上经历了30多年。早在1917年,爱因斯坦在研究黑体辐射对气体平衡计算时,发现辐射具有两种形式,自发辐射和受激辐射,从而提出了受激辐射的理论。1928年,德国的兰登伯在研究氖气色散现象时,发现激发电流超过一定值时,氖气的反常色散效应增强,这个实验实际上间接证实了受激辐射的存在,也直接给出了受激辐射的发生条件是实现粒子数反转。粒子数反转这一思想至关重要,然而在当时人们的心目中,认为这是不可思议的,因为在热平衡条件下,低能级粒子数总要比高能级粒子数多,实现粒子数反转就等于要破坏热平衡。因此粒子数反转思想未能引起更多人的注意。直到1951年,美国物理学家珀塞尔首先提出“负温度”概念,并把粒子数反转称为“负温度”状态。
这一温度概念的提出,解开了人们的思想禁锢,突破了人们对温度的原有想象。一直以来,在人们的传统思维中,认为比0开低的温度,肯定能量更低,也更寒冷。事实却相反,当温度趋于无穷大时,才会出现负温度状态。
现在我们明白了,所谓的负温度,是能量比正温度还要高的状态。如果从冷热来说,负温度比正温度更“热”。如果正负温度的两物体热接触,热量将从负温物体传到正温物体。并且,负温度只能出现在组成宏观物体的微观粒子的能级是有限的情况。如果能级无限,粒子的能量就会无限上升,而不会出现反转。例如只考察某粒子的自旋在磁场中的能量。就是有限的能级。而平常多数系统例如原子组成的系统,由于原子能级无限(例如氢原子从基态-13.6电子伏特到电离态0电子伏特之间有无穷多个能级),所以不存在负温度状态。
负温度其实是描述从零到正无穷的开氏温标所不能描述的状态。在开氏温度达到正无穷后还有温度,即负温度。这样就明确了负温度的含义:它不是表示比绝对零度还低的温度,而是表示大于正无穷的温度。
负温度,例如-274度,显然是可能存在的