标准化管理系统:什么是亚原子?

来源:百度文库 编辑:中科新闻网 时间:2024/04/26 23:23:03
请详细介绍

假定我们把每一个亚原子粒子都挂上标签:要嘛是A,
要嘛是B,二者必居其一。现在再进一步假定,一个A粒子
只要分裂成两个粒子,这两个粒于要不是统统属于A类,就
必定统统属于B类。这时我们可以写出A=A+A或A=B
+B。一个B粒子如果分裂成两个粒子,这两个粒子当中总
是有一个属于A类,另一个则属于B类,所以我们可以写出
B=A十B。
你还会发现另一种情形:如果两个粒子互相碰撞而分裂
成三个粒子,这时你就可能发现A+A=A+B+B或A+
B=B+B+B。
但是,有些情形却是观察不到的。例如,你不会发现A
+B=A+A或A+B+A=B+A+B。
这一切是什么意思呢?好吧,让我们把A看作2,4,
6这类偶数当中的一个,而把B看作3,5,7这类奇数。
两个偶数相加总是等于偶数(6=2+4),所以A=A+
A。两个奇数相加也总是等于偶数(8=3+5),所以A
=B+B。但是,一个奇数和一个偶数之和却总是等于奇数
(7=3+4),所以B=A+B。
换句话说,有些亚原子粒子可以称为“奇粒子”,另一
些亚原子粒子可以称为“偶粒子”,因为它们所能结合成的
粒子或分裂成的粒子正好与奇数和偶数相加时的情况相同。
当两个整数都是偶数或者都是奇数时,数学家就说这两
个整数具有“相同的奇偶性(宇称)”;如果一个是奇数,
一个是偶数,它们就具有“不同的奇偶性(宇称)”。这样
一来,当有些亚原子粒子的行为象是奇数,有些象是偶数,
并且奇数和偶数的相加法则永远不被破坏时,那就是过去所
说的“宇称守恒”了。
1927年,物理学家魏格纳指出,亚原子粒子的宇称
是守恒的,因为这些粒子可以看作是具有“左右对称性”。
真有这种对称性的东西与它们在镜子里所成的像(镜像)完
全相同。数字0和8以及字母H和X都具有这样的对称性。
如果你把8,0,H和X转一下,让它们的右边变成左边,
左边变成右边,那么,你仍旧会得到8,0,H和X。字母
b和p就没有这种左右对称性。要是你把它们转个180°,
b就会变成d,p就变成q——成为完全不同的字母了。
1956年,物理学家李政道和杨振宁指出,在某些类
型的亚原子事件中宇称应该不守恒,并且实验很快就证明他
们的说法是对的。这就是说,有些亚原子粒子的行为好象它
们在某些条件下是不对称似的。
由于这个原因,人们研究出了一个更普遍的守恒律。在
一个特定粒子不对称的地方,它的反粒子(即具有相反的电
荷或磁场)也是不对称的,但两者的模样相反。因此,如果
粒子的形状象p,它的反粒子的形状就象q。
如果把电荷(C)和宇称(P)放在一起,就能建立一
条简单的法则,来说明哪些亚原子事件能够发生,哪些亚原
子事件不能够发生。这个法则称为“CP守恒”。
后来,人们又明白了,为了使这个法则真正保险,还必
须考虑到时间(T)的方向;因为一个亚原子事件看起来既
可以是在时间中向前推进,也可以是在时间中向后倒退。添
上时间以后的法则称为“CPT守恒”。
近来,就连CPT守恒也成问题了,不过到底怎么样,
目前还没有得出最后的结论。

电子绕原子核的运动:是电子在电磁引力和万有引力的作用绕原子核作的圆周运动,不需要能量来维持。这种运动的状态的变化决定了电子能量的变化。////
参考资料:高中物理课本

就是尺寸大于原子直径的微粒,比如纳米级的尺寸

在阿根廷一片人烟稀少的地方,一项宇宙探测计划正在悄无声息地进行。科学家正在积极收集来自宇宙的神秘信息,希望能在不久的将来揭开一个隐藏在宇宙最深处的秘密。

这片土地远远看去没有什么特别,可要是仔细观看,就会发现,一个个像UFO一样的大型白色罐子有规律地排列在地上。据科学家说,在这片占地3000平方公里的区域,总共分布了数百个这样的白色罐子,它们是专门用来接收一种神秘、稀少而且高能的宇宙射线的。

科学家称这种射线中的亚原子微粒为“宇宙子弹”,是目前宇宙学中的一个未解之谜。这种粒子包含有大量能量,远远超出了宇宙中的普通粒子。科学家称如果能找出它们从何而来、如何形成,就有可能对现有的相对论等物理学理论提出根本性挑战,意义十分重大。

在阿根廷西部建立的名为皮埃尔·奥格的天文观测站,总共耗资5000万美元。最早是由1980年的诺贝尔物理奖学得主,芝加哥大学的詹姆斯·克罗宁教授提出设计构想,不久前正式完工。

此前,科学家对亚原子微粒了解很少,而在这个天文观测站建立之后,科学家每年可以收集50次亚原子微粒轰击地球时的详细资料。据参与这个研究项目的天体物理学家卡洛斯·赫瓦特说,这些信息对人类了解“宇宙子弹”将提供巨大帮助,甚至对人类自身的知识体系也将提出挑战。

天体物理学家卡洛斯·赫瓦特说:“我们希望研究这些粒子的最初形态,想知道它们的能量、速度信息,我们更愿意称它们为“宇宙信使”,因为它们能帮助我们完善自身的知识体系。”

有些科学家曾猜测,这些射线是在宇宙形成之初发出的,大约就是大爆炸后几秒钟,也有科学家猜测这些射线是从黑洞中发出的。但无论是什么,赫瓦特认为了解这些射线的形成,都能帮助人们解释宇宙是如何形成和发展的。法国科学家泽维尔·贝尔图已经在这里工作很长时间了,他说,现在的物理学理论可能无法解释这些射线和亚原子微粒的形成。

法国科学家泽维尔·贝尔图说:“如果你能用这些粒子,聚集成一个网球那么大的球,那么这个球所包含的能量将会比地球的内核能量还要大。”

1991年,美国科学家发现,亚原子微粒包含的能量不同寻常,比用爱因斯坦相对论计算出的能量要大出6倍。那时,人们就有了深入了解这种粒子的迫切愿望,后来科学家发现阿根廷海拔1200米的马拉圭平原是建立“宇宙子弹”接收站的绝佳地点。

现在分布在这片区域内、装满纯水的接收器,就像是高度灵敏的传感器,只要有射线扫过,它就能捕获其中的亚原子微粒粒子。预计到2006年,这种接收器的数量将达到1600个,接收的有效面积和精度将大大提高。这些都会为科学家研究“宇宙子弹”的来源和形成,透析宇宙中的种种奥秘提供帮助。[科学]